#author("2022-08-22T16:09:28+09:00","default:okada","okada")
#author("2022-08-22T16:10:36+09:00","default:okada","okada")
*Python Install (Windows) [#u9e657ab]

RIGHT:更新日&lastmod();
RIGHT:作成日:2022年8月22日

-画像の中から写っているものを検出するために、Pythonを使用する。そのための必要なPythonとライブラリをWindowsにインストールする。
-サンプルプログラムで確認

**Pythonのインストール [#k6f90a03]

以下のDL先からStable Releasesの最新版の「Windows installer(64-bit)」をDLする

https://www.python.org/downloads/windows/

DLしたインストーラを実行すると以下の画面になるので、必要な個所を選択してインストールを行う

&ref("./Python_install.png");

***インストール後のバージョン確認 [#n4dd8939]

 C:\temp\Python\d_object>python --version
 Python 3.10.6

***参考 [#d87aa894]

-https://www.sejuku.net/blog/33294

-https://www.sejuku.net/blog/105993


**Windows版MXNet 1.8.0 をインストールする方法 [#f7f12b1a]

MXNetはPythonを含めた複数のプログラミング言語から利用できる深層学習フレームワークをインストールする

-ディープラーニングのフレームワーク:MXNet 

***インストール手順 [#l3ba005d]

コマンドプロンプトから以下のコマンドを実行する

MXNetはCPU用とGPU用がある。今回はCPU用をインストールする

-pip install mxnet -f https://dist.mxnet.io/python/cpu

 > cd C:\temp\Python\d_object
 
 C:\temp\Python\d_object>pip install mxnet -f https://dist.mxnet.io/python/cpu
 Looking in links: https://dist.mxnet.io/python/cpu
 Collecting mxnet
   Downloading https://repo.mxnet.io/dist/python/cpu/mxnet-1.8.0-py2.py3-none-win_amd64.whl (20.7 MB)
      ---------------------------------------- 20.7/20.7 MB 7.3 MB/s eta 0:00:00
 Collecting requests>=2.18.4
   Downloading requests-2.28.1-py3-none-any.whl (62 kB)
      ---------------------------------------- 62.8/62.8 kB 3.3 MB/s eta 0:00:00 
 (略)
 
 Collecting idna<4,>=2.5
   Downloading idna-3.3-py3-none-any.whl (61 kB)
      ---------------------------------------- 61.2/61.2 kB ? eta 0:00:00
 Installing collected packages: urllib3, numpy, idna, graphviz, charset-normalizer, certifi, requests, mxnet
 Successfully installed certifi-2022.6.15 charset-normalizer-2.1.0 graphviz-0.20.1 idna-3.3 mxnet-1.8.0 numpy-1.23.2 requests-2.28.1 urllib3-1.26.11
 
 [notice] A new release of pip available: 22.2.1 -> 22.2.2
 [notice] To update, run: python.exe -m pip install --upgrade pip

***pipのUpdate [#k6b94866]

 C:\temp\Python\d_object> python.exe -m pip install --upgrade pip
 Requirement already satisfied: pip in c:\usr\python\python310\lib\site-packages (22.2.1)
 Collecting pip
   Downloading pip-22.2.2-py3-none-any.whl (2.0 MB)
      ---------------------------------------- 2.0/2.0 MB 10.0 MB/s eta 0:00:00
 Installing collected packages: pip
   Attempting uninstall: pip
     Found existing installation: pip 22.2.1
     Uninstalling pip-22.2.1:
       Successfully uninstalled pip-22.2.1
 Successfully installed pip-22.2.2

***参考 [#h4b1c047]

-https://touch-sp.hatenablog.com/entry/2021/07/07/215415


**gluoncvのInstall [#z27e1d18]

GluonCV とは、ディープラーニングのフレームワーク MXNet が提供するコンピュータビジョン用のインターフェースになります。

***Install手順 [#u68d8bd7]

 C:\temp\Python\d_object>pip install gluoncv --upgrade
 Collecting gluoncv
   Downloading gluoncv-0.10.5.post0-py2.py3-none-any.whl (1.3 MB)
      ---------------------------------------- 1.3/1.3 MB 8.9 MB/s eta 0:00:00
 Collecting matplotlib
   Downloading matplotlib-3.5.3-cp310-cp310-win_amd64.whl (7.2 MB)
      ---------------------------------------- 7.2/7.2 MB 8.8 MB/s eta 0:00:00
 
 (略) 
 
 Installing collected packages: pywin32, pytz, six, scipy, pyyaml, pyparsing, \
 portalocker, Pillow, opencv-python, kiwisolver, fonttools, cycler, colorama, \
 yacs, tqdm, python-dateutil, packaging, autocfg, pandas, matplotlib, gluoncv
 Successfully installed Pillow-9.2.0 autocfg-0.0.8 colorama-0.4.5 cycler-0.11.0 \
 fonttools-4.35.0 gluoncv-0.10.5.post0 kiwisolver-1.4.4 matplotlib-3.5.3 \
 opencv-python-4.6.0.66 packaging-21.3 pandas-1.4.3 portalocker-2.5.1 \
 pyparsing-3.0.9 python-dateutil-2.8.2 pytz-2022.2.1 pywin32-304 pyyaml-6.0 \
 scipy-1.9.0 six-1.16.0 tqdm-4.64.0 yacs-0.1.8


**サンプルプログラム [#u5618b41]

写真に写っている車とバイクの数を数えるプログラム

***プログラムのソース [#w3981a24]

 #写真の中の2種類の画像(car,motorcycle)の数を数える

-d_object2.py

 import mxnet as mx
 
 from gluoncv import model_zoo, data, utils
 
 # url = 'https://cdn-ak.f.st-hatena.com/images/fotolife/t/touch-sp/20190814/20190814122423.jpg'
 filename = '02.jpg'
 # utils.download(url, filename)
 
 net = model_zoo.get_model('faster_rcnn_fpn_resnet101_v1d_coco', pretrained=True, root='./models')
 
 net.reset_class(['car'], reuse_weights=['car'])
 
 """ 
 すべての画像を読み込み、正規化を適用してテンソルに変換するユーティリティ関数
 この関数は 2 つの結果を返します。1 つ目は、形状 (batch_size, RGB_channels, height, width) を持つ NDArrayです。
 モデルに直接入力できます。2番目のものには、簡単にプロットできるようにnumpy形式の画像が含まれています。
 単一の画像のみを読み込んだため、xの最初の次元は 1 です。https://cv.gluon.ai/api/data.transforms.html
 """
 x, img = data.transforms.presets.rcnn.load_test(filename)
 
 class_IDs, scores, bounding_boxs = net(x)
 
 count = int(mx.nd.sum(scores[0]>0.9).asscalar())
 
 #--------------
 
 net = model_zoo.get_model('faster_rcnn_fpn_resnet101_v1d_coco', pretrained=True, root='./models')
 net.reset_class(['motorcycle'], reuse_weights=['motorcycle'])
 
 x, img = data.transforms.presets.rcnn.load_test(filename)
 
 class_IDs, scores, bounding_boxs = net(x)
 
 count2 = int(mx.nd.sum(scores[0]>0.6).asscalar()) 
 
 print('car = ', count)
 print('motorcycle= ', count2)

***実行結果 [#d6919272]

インストール初回実行時はモジュールのDLが始まる

 D:\Temp\Python\d_object>python d_object2.py
 ----(以下のWarningは無視していいみたい)----
 C:\Usr\Python\Python310\lib\site-packages\mxnet\gluon\block.py:1591: UserWarning: Cannot decide type for the following arguments. Consider providing them as input:
 C:\Usr\Python\Python310\lib\site-packages\mxnet\gluon\block.py:1591: UserWarning: Cannot decide type for the following arguments. Consider providing them as input:
 ----(ここまで)-----
         data: None
   input_sym_arg_type = in_param.infer_type()[0]
 ----(ここからモジュールのDL)----
 Downloading ./models\faster_rcnn_fpn_resnet101_v1d_coco-1194ab4e.zip from \
 https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/models/faster_rcnn_fpn_resnet101_v1d_coco-1194ab4e.zip...
 231264KB [01:11, 3222.49KB/s]
 ----(DLここまで)----
 
 car =  4
 motorcycle=  2

-サンプル画像

&ref("./02-1.png");

***参考 [#p9a7b1c1]

-https://touch-sp.hatenablog.com/entry/2019/08/14/101234

**このモジュールでののような種類が判別できるか表示 [#na8df828]

***ソース [#hf35ed9c]

-howtype.py

 from gluoncv import model_zoo
 net = model_zoo.get_model('faster_rcnn_fpn_resnet101_v1d_coco', pretrained=True, root='./models')
 print('検出種類', net.classes)
 print('検出種類数' ,len(net.classes))


***実行結果 [#j187a1c0]

 python howtype.py
 C:\Usr\Python\Python310\lib\site-packages\mxnet\gluon\block.py:1591: UserWarning: Cannot decide type for the following arguments. Consider providing them as input:
         data: None
   input_sym_arg_type = in_param.infer_type()[0]
 検出種類  ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck',\
 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench',\
 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', \
 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', \
 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', \
 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', \
 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', \
 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', \
 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', \
 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', \
 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
 検出種類数 80

**その他 [#if5b7755]

***以下のエラーは無視でよいみたい [#r313797e]

C:\Usr\Python\Python310\lib\site-packages\mxnet\gluon\block.py:1591: UserWarning: Cannot decide type for the following arguments. Consider providing them as input:~
C:\Usr\Python\Python310\lib\site-packages\mxnet\gluon\block.py:1591: \~
UserWarning: Cannot decide type for the following arguments. Consider providing them as input:~
       data: None

***mxnetのバージョン確認 [#m9b9bc29]

-verchk.py

 # mxnetのバージョン確認
 
 import mxnet
 print ('mxnet version ', mxnet.__version__)

-実行

 C:\temp\Python\d_object>python verchk.py
 mxnet version  1.8.0


**「ImageNet」(「ILSVRC2012」データセット)について [#n6109b91]

-http://starpentagon.net/analytics/imagenet_ilsvrc2012_dataset/

トップ   編集 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS